Online Loop-Closure Detection via Dynamic Sparse Representation

نویسندگان

  • Moein Shakeri
  • Hong Zhang
چکیده

Visual loop closure detection is an important problem in visual robot navigation. Successful solutions to visual loop closure detection are based on image matching between the current view and the map images. In order to obtain a solution that is scalable to large environments involving thousands or millions of images, the efficiency of a loop closure detection algorithm is critical. Recently people have proposed to apply l1-minimization methods to visual loop closure detection in which the problem is cast as one of obtaining a sparse representation of the current view in terms of map images. The proposed solution, however, is insufficient with a time complexity worse than linear search. In this paper, we present a solution that overcomes the inefficiency by employing dynamic algorithms in l1-minimization. Our solution exploits the sequential nature of the loop closure detection problem. As a result, our proposed algorithm is able to obtain a performance that is an order of magnitude more efficient than the existing l1-minimization based solution. We evaluate our algorithm on publicly available visual SLAM datasets to establish its accuracy and efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Online Sparsity-Cognizant Loop-Closure Algorithm for Visual Navigation

It is essential for a robot to be able to detect revisits or loop closures for long-term visual navigation. A key insight is that the loop-closing event inherently occurs sparsely, i.e., the image currently being taken matches with only a small subset (if any) of previous observations. Based on this observation, we formulate the problem of loop-closure detection as a sparse, convex `1-minimizat...

متن کامل

Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation

JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...

متن کامل

Sparse optimization for robust and efficient loop closing

It is essential for a robot to be able to detect revisits or loop closures for long-term visual navigation. A key insight explored in this work is that the loop-closing event inherently occurs sparsely, i.e., the image currently being taken matches with only a small subset (if any) of previous images. Based on this observation, we formulate the problem of loop-closure detection as a sparse, con...

متن کامل

3D Scene and Object Classification Based on Information Complexity of Depth Data

In this paper the problem of 3D scene and object classification from depth data is addressed. In contrast to high-dimensional feature-based representation, the depth data is described in a low dimensional space. In order to remedy the curse of dimensionality problem, the depth data is described by a sparse model over a learned dictionary. Exploiting the algorithmic information theory, a new def...

متن کامل

Robust Multimodal Sequence-Based Loop Closure Detection via Structured Sparsity

Loop closure detection is an essential component for simultaneously localization and mapping in a variety of robotics applications. One of the most challenging problems is to perform long-term place recognition with strong perceptual aliasing and appearance variations due to changes of illumination, vegetation, weather, etc. To address this challenge, we propose a novel Robust Multimodal Sequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015